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LETTER TO THE EDITOR 

A class of generalised multiple hypergeometric series arising 
in physical and quantum chemical applications 

H M Srivastava 
Department of Mathematics, University of Victoria, Victoria, British Columbia V8W 2Y2, 
Canada 

Received 1 1  December 1984 

Abstract. The multivariable hypergeometric function " F ( x , ,  . . . , x n ) ,  considered recently 
by Niukkanen, is a straightforward generalisation of certain well known hypergeometric 
functions of n variables; indeed it provides a unification of the generalised hypergeometric 
function pFq of one variable, Appell and KampC de FCriet functions of two variables, and 
Lauricella functions of n variables, as well as of many other hypergeometric series which 
arise naturally in physical and quantum chemical applications. The object of the present 
paper is to derive several interesting properties of this multivariable hypergeometric function 
(including, for example, many which were not given by Niukkanen) as useful consequences 
of substantially more general results available in the literature. 

Hypergeometric series in one and more variables occur frequently in a wide variety 
of problems in theoretical physics, applied mathematics, engineering sciences, statistics, 
and operations research (see, e.g., Exton 1976, ch 7,8,1978 ch 7, Carlson 1977, Srivastava 
and Kashyap 1982, Kabe 1962, Srivastava and Exton 1979, Dyer 1982). Motivated by 
a vast field of physical and quantum chemical applications of these hypergeometric 
functions, Niukkanen ( 1983, 1984) presented various interesting and useful properties 
of a generalised hypergeometric series of n variables defined by 

where, for convenience, 

1 
aj = ( U j , .  . . , U P ) ,  bj = (bf, . . . , b p ) ,  

D a 

and ( h ) , = T ( h + s ) / T ( A )  is a Pochhammer symbol. Thus aj and bj ( j = O ,  1, ..., n) 
are vectors with dimensions p j  and qj, respectively. 

The multivariable hypergeometric function (1) is an obvious special case of the 
generalised Lauricella function of n variables, which was first introduced and studied 
by Srivastava and Daoust (1969, p 454 et seq.). In fact, this widely studied (Srivastava- 
Daoust) generalised Lauricella function has appeared in several subsequent works 
including, for example, two important books by Exton (1976, 0 3.7, 1978, 9 1.4) and 
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a recent book by Srivastava and Manocha (1984, p 64 et seq.). Also, a further special 
case of the multivariable hypergeometric function ( 1) when 

PI = . . * = Pfl and 41 = . . . = qn (4) 

was considered earlier by Karlsson (1973). In the present letter we aim at employing 
these fruitful connections of (1 )  with much more general multiple hypergeometric 
functions (studied in the literature rather systematically) in order to derive several 
interesting properties of (1).  Many of the results presented here were not given by 
Niukkanen (1983, 1984). 

Following Srivastava and Daoust (1969, p 454 et seq) we find it to be convenient 
to abbreviate the left-hand side of ( 1 )  simply by 

whenever no confusion is likely to arise. 
Niukkanen (1983, 1984) presented the definition (1 )  without stating the regions of 

convergence of the multiple hypergeometric series occurring on the right-hand side of 
( 1 ) .  However, from the work of Srivastava and Daoust (1972, 9 5), where the regions 
of convergence of the (Srivastava-Daoust) generalised Lauricella series in n variables 
are given, we readily observe that the multiple hypergeometric series in ( 1 ) converges 
absolutely when 

1 + 90 + q k  -Po - P k  3 0, k = 1, . . . , n, (6) 

Po' 90 and I x I I I I ( P o - s o ) + * .  . + J x f l J ' / ( P o - q o ) <  1 (7) 

Po< 40 and m a x h l , .  . . , Ixflll < 1. (8) 

where the equality holds true provided, in addition, we have either 

or 

Indeed, under certain parametric constraints, the multiple hypergeometric series in ( 1)  
converges also when 

By analogy with the abbreviations in (2), let 

a = ( U ] ,  . . . , U P )  and b = ( b ' ,  . . . , b') ,  (10) 

so that a and b are vectors with dimensions p and q, respectively. The following trivial 
reduction formulae for the multivariable hypergeometric function ( 1 )  are given by 
Niukkanen (1983)t: 

F$ :;: ;;!)(E: :::i i): xl,,..,xn) = P I  F q, [" b i ;  ; . . p .Fqn[%i  x m 1 9  ( 1 1 )  

which follows immediately from the definition ( 1 ) ;  

(12) 

which is an obvious special case of the elementary multinomial theorem (see, e.g., 

FP:  0: ... ; 0 a 4 :  o;  ,,,; o( b i  1: 1::: zi xl , . . . .x~)  = P F 4 ["' b :  xl+ ...+ xn], 

t Throughout the present paper we follow the standard notation pF4 to denote a generalised hypergeometric 
series in one variable with p numerator and 9 denominator parameters. Also, as is quite usual in the theory 
of hypergeometric functions, an empty set of parameters is represented by a dash. 
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Srivastava (1971, p 4, equation (12)) 

a Xfl  x> O0 (XI+.  . .+x,y 
f(Sl+. . .+S,)?.  * * -= f(s) 

SI, ..., s .=o  SI. s,! s = o  S !  

From Panda (1974) and Karlsson (1982, 1983), involving much more general consider- 
ations, we also have the following non-trivial reduction formulae for the multivariable 
hypergeometric function (1): 

(15) 

(16) 

F P :  2: ... : 2 " VI, U , + l / 2 ;  .,,; U", U , , + l / 2 ;  ,,,,, .) = p  F [a,  U,+ ...+ U,, U,+ ...+ V n + 1 / 2 ;  
4 :  1 :  ... ; I ( b l  2 u 1 + 1 ;  ... ; 2v ,+ l ;  + 2  q + l  b, 2 u , +  ...+ 2 u , + l ;  

F p :  2 ;  ... : 2 a Y ] .  w u , + l ;  .,.: U", wv"+l :  p :  1 .  1 a U,+ ...+ v n + n ;  - n :  x, ( l -w-~)x] ,  
Dy,: x . . . . .~ )  = F q , o ;  . _.  q :  I ;  ... ; I ( b i  wuI; ... : . ,  

where the function on the right-hand side is a two-variable case of (1). 

the interesting result (cf Karlsson 1983) 
For w = 1, (16) evidently leads to (14). A special case of (16) when w =; yields 

F p :  2 :  .,,; 2 a YI. v , / 2 + 1 ;  ... ; U", v n / 2 + l :  v J 2 :  x ,..,, x )  = F [ " I 2 ,  - n ;  4p-qx2], 
q :  I ;  ... : I (  bi v 1 / 2 :  ... : 2 p + l  2 q  b / 2 ,  b / 2 + 1 / 2 ;  

where v l  + . . . + v, = -2n .  
For suitable choices of the variable x and of the various parameters involved, fhe 

one-variable hypergeometric series occurring on the right-hand sides of the above 
reduction formulae can be summed by appealing to one or the other known summation 
theorems (see Slater 1966, Luke 1975). For example, in view of Dougall's summation 
theorem, the reduction formula (14) immediately yields (cf Srivastava 1978) 
~ 6 :  I ;  ... : I a. I + a / 2  7, 6, - N :  U ] ;  .._; U"; 

6 :  0; ,..: O ( a / 2 .  I + a - P :  I + a - - y ,  l + u - 6 ,  I + a + N ,  I + a - A :  -: ,..: -; '*..''I) 

(18) 
- (1  +a),(I + a  - p  - y),(l + a  - p  -6),(l + a  - y - S ) ,  - 

( 1  + (Y -p)N( l  +(Y  -?),(I + a  - 8 ) N ( 1 +  - p  -y-S)N'  

where NE{O, 1 , 2 , .  . .}, and 

1 + 2a  = /3 + y + 6 + A - N, A = v l +  ...+ vn.  

Similarly, by employing Bailey's summation theorem in the reduction formula ( 15) we 
obtain 

VNE{O, 1,2 , . . .  }, 

which incidentally was derived by Srivastava (1977, p 452, equation (18)) from the 
reduction formula (14). 

The earlier works of Srivastava and Daoust (1969), Srivastava and Panda (1973, 
1974, 1975, 1976), and Srivastava (1981) contain several general classes of analytic or 
asymptotic expansions and multiplication formulae for the (Srivastava-Daoust) gen- 
eralised Lauricella function of n variables. Each of these general results can indeed 
be applied in order to derive the corresponding expansion and multiplication theorems 
for the multivariable hypergeometric function ( 1). We present here only the following 
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three classes of expansion or multiplication formulae: 

F ( u x , ,  . . . , u x , ) ' F P , = ~ : P q : : : ' , ' , ' , ~ ~ ( ~ ~ ~  ;;;:::;;;; UXI ..... 'X" 1 

(20) X ~ 2 + s + p , : p l :  ... ; p , ( - m , A + m , d  a,,:.; ... ; 
r+qo: ql: ... : qn f ,  4: b l ;  ...; x13" ' *xn) ,  

p + r ~ q + s + 2  (the equality holds true when IuI < 1 ); 

a+m, c + m :  
p + r F q + s [ b + m ,  d + m ;  '1 

a: 

F ( u x l , .  . . , U X , )  = r m ( a ,  C ;  b, d ) -  
m =O m !  

), (21) X ~ l + ~ + p O : p I : . . . : p n ( - m , d . a , , :  a ;...:a' 
r+qo: q1 : ... : qn c, 4: bl ; ._.: b:: xl"" 'x~ 

p + r s q + s + l  (the equality holds true when Iul< 1); 

(-U)" a: 
F ( u x  ,,.. ., u x , ) = p  ( l - c " p ) m - , r m ( a ,  C ;  b,d)---  

m=O m !  

where, by analogy with the abbreviations in (2) and (lo),  

c = ( c I , .  . . , c ' )  and d = ( d ' ,  . . . , d ' ) ,  

so that c and d are vectors with dimensions r and s, respectively, and 

it being understood in every case that 

1 + q O +  q k  - p O - p k  p - 4, k = 1, * . . , n, (25) 

where the equality holds true when I u J  and lxl l ,  . . . , [x,I are appropriately constrained 
in accordance with ( 7 )  and (8). 

The expansion formula (20) follows readily from a more general result due to 
Srivastava and Daoust (1969, p 456, equation (4.3)). In view of the principle of 
confluence exhibited by 

for bounded z and m = 0, 1 ,  2 , .  . . , the expansion formula (21) will follow if in (20) 
we replace U by Au and x k  by X k / h ,  k = 1 , .  . . , n, and let A +CO. In a much more 
general context, (21) was given by Srivastava and Panda (1976, p 143, equation (6.6)). 
The expansion formula (22), which also yields (21) in the special case CY = 0, follows 
from a general expansion due to Srivastava (1981, p 302, equation (3.3)). 

Each of the above expansion or multiplication formulae (20), (21) and (22) can 
be further specialised to yield a desired Neumann expansion (in series of Bessel 
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functions J ,  and I,), since 

and 

We should remark in passing that a very specialised version of the expansion 
formula (20) was given by Niukkanen (1983, p 1823, equation (47)). 

Linear, bilinear and bilateral generating functions involving various general classes 
of functions of n variables have been studied rather widely in the literature. Much of 
the important work on the subject has been presented systematically in the recent 
monograph on generating functions by Srivastava and Manocha (1984, ch 4, 7, 8, 9). 
We choose to give here only the following simple consequences of certain general 
classes of linear generating functions due to Srivastava (1970, 1972): 

f ( U + ( @ + l ) m ) F I + p o :  P I :  ... : -m, 0: aI :  ... : a ' 
m I+qo: q l :  ... : k ( u + p m + l ,  lb: b l ;  ... ; b:: x13" '9xn) tm 

m=O 

where a, P are arbitrary complex numbers, and 5 is a function of t defined (implicitly) 
by 

5 = t (  1 + l ) @ + I ,  5(0) = 0; (30) 

For P = 0, (30) immediately yields 

5 = t l ( l - t ) ,  

so that (29) with a = A - 1 and p = 0 assumes the form (cf Srivastava and Choe 1972) 

I 4  < 1, 
(32) 

- ( 1  - t ) - A ~ l + p O :  P I ;  ... : p ,  A, a,,: E l ;  ... : : -3 ~x 
40: q l ;  ... ; q n (  a: bl; ... ; b:: [ - , ' " ' '  I - ,  1, - 

which is analogous to (31). 

obtain (cf Srivastava and Daoust 1973) 
A limiting case of the generating function (32) follows in view of (26), and we 
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In a similar manner it is not difficult to deduce (from more general multiple-series 
identities) the following interesting generalisation of a generating function considered 
by Niukkanen (1983, p 1820, equation (33)): 

where, for convenience, CT = 1 - p ,  + 9,. The special role of the variable x ,  in (34) can 
be appropriately assumed instead by any of the remaining variables xl, . . . , x , - ~ .  

In its special case when p o  = qo = 0, this last generating function (34) reduces to 
Niukkanen's result referred to above. 

Niukkanen (1983, 1984) has proved a number of operator reduction formulae for 
the multivariable hypergeometric function (1) .  All of Niukkanen's results of this type, 
including his main result (Niukkanen 1984, p L733, equation (20)), are obvious special 
cases of the following rather elementary theorem which can nonetheless be applied to 
derive a much larger set of operator reduction formulae involving various classes of 
multiple hypergeometric series. 

Theorem. For bounded multiple sequences ( A ( s , , .  . . , s,)} and {O(sl, . . . , s,)}, let 

X i !  x> 
S I  ,...,S. =o s , !  s,! 

CO 

 XI,. . . , x , ) =  1 A(s , ,  , . . , s,)-, . .- 

and 

m X l l  x> 
%(x ,,..., x , ) =  c O(s ,  ) . . . ,  s,)- . . . -  

s, .  . . , .sn=O SI! sn!' 

Also define 

CO 
X i ]  x',. 

si,  ..., s,=o SI. s,! 
- 9 * %(x, , .  , . , x , )  = h ( s l ,  . . . , s,)R(s,, . . . , s n ) ~ .  . . 

= % * 9 ( x , ,  . . . , x,), 

Then 

provided that each of the multiple series involved converges absolutely. 

Boo$ Since 

(35) 
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the second member of our assertion (38) equals 

which, in view of the definition (37), is precisely the first member of (38), and the 
proof of the theorem is evidently completed. 

By assigning suitable special values to the essentially arbitrary coefficients 
A ( s l ,  . . . , s,) and O(s1 ,  . . . , s"), our theorem can readily be applied to derive the 
aforementioned classes of operator reduction formulae for various hypergeometric 
functions of n variables. The details involved are fairly straightforward, and may be 
left as an exercise for the user of multivariable hypergeometric functions. 

This work was supported, in part, by the Natural Sciences and Engineering Research 
Council of Canada under Grant A-7353. 
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